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Extended Abstract

Motivation

The motif-scaffolding problem is an open challenge in protein design where
"scaffolds" are constructed around a user-defined "motif." Successfully performing
this conditional generation will enable users to design proteins with specific
functions with applications in medicine, sustainability, engineering, and more.
However, due to the biophysical heterogeneity and expansive design space of
all possible motifs, it has been challenging to develop and evaluate methods that
perform this task well. Recently, MotifBench, a collection of hard-to-solve motif
test cases, was released to provide a benchmark toward standardized evaluation for
motif scaffolding. Current pre-trained protein language models (pLMs) are known
to perform poorly on this benchmark, despite performing well on other protein
tasks (e.g., unconditional backbone generation). In this project, we apply a popular
paradigm of finetuning language models known as preference optimization to
improve scaffold generation with pLMs by aligning generation to correct scaffolds.

Methods

We apply two preference optimization methods, direct preference optimization
(DPO) and identity preference optimization (IPO) to the baseline ESM3 model
(1.4B parameters): ESM3-open. We finetune ESM3-open for three select test
cases from MotifBench. In the first stage of training, we align ESM3 on offline
preferences for each motif. Then using the finetuned model, we generate online
preferences and conduct a second stage of finetuning. To our knowledge, this is
the first time preference optimization has been applied to the motif-scaffolding
problem.

Implementation & Results

We generate offline and online preference datasets for three of MotifBench test
cases. Optimal scaffolds are selected by motif preservation, biological plausibility,
and sequence foldability. These scaffolds are paired with negative examples
using the same motif coordinates. Each dataset contains 1.2-1.8k preference
pairs. ESM3-open is finetuned using 8 epochs, using batch size 8 and 8 gradient
accumulation steps. We also use gradient clipping to improve training stability.

After the first stage of finetuning, we observe scaffold success rate improve by 7%
and 1% with IPO and DPO respectively. After a second stage of finetuning, we
observe a drop in performance by -22% and -16% with IPO and DPO respectively
compared to baseline. Additionally, we find that first-stage finetuned models
improve motif preservation (p < 0.001).

Discussion & Conclusion

Our results demonstrate that preference optimization can improve scaffold gen-
eration with ESM3-open, however more work will be needed to evaluate this for
pLMs with more parameters and more motifs. Despite this, our results show that
finetuned ESM3-open has a higher scaffold success rate and that overall scaffolds
better preserve motif function. However, we observe that two-stage finetuning
has an adverse effect on performance on this task. While our project is a proof
of concept, and we recognize that our results are highly sensitive to choice of
motif, we believe that preference optimization may be a viable method to improve
pLM scaffold generation and ultimately the ability to flexibly design proteins for a
variety of domains.
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Abstract

We present reinforcement learning (RL)-based methods for approaching the motif-
scaffolding problem, a canonical conditional generation task in protein design. We
apply direct preference optimization (DPO) and identity preference optimization
(IPO) to ESM3-open for generating scaffolds to support three challenging test
cases presented in MotifBench, a new benchmark for evaluating the performance
of generative models on the motif-scaffolding problem. We curate 1.2-1.8k offline
and online preference pairs for each motif test case and finetune ESM3 using these
data. With single-stage finetuning, we see an average success rate increase of 7%
and 1% with IPO and DPO, respectively. However, we see that performance drops
drastically with the scaffolds generated from the two-stage finetuned models. These
results suggest that two-stage finetuning may lead to the models overfitting to the
entire backbone structure at the expense of motif fidelity. Our findings highlight a
promising direction for motif scaffolding using reinforment learning techniques.

1 Introduction

Protein language models (pLMs) have revolutionized novel protein design. By conditioning genera-
tion of amino acid sequences and structure (scaffolds) on a set of high conserved regions (motifs) of
the protein, researchers can design novel proteins with desired function or stability. This constitutes
the motif-scaffolding problem: the goal of identifying diverse protein structures preserve the motif
and maintain its geometry. However, there remains an open challenge of how these motifs should be
placed in the surrounding scaffold generated by the pLM.

Some current methods [[1} 2] perform this conditional generation by relying on user-defined motif
placements around which to generate the scaffold. Others [3| 4] determine placements at sampling
time from a set of possible arrangements along the generation prompt.

We aim to apply reinforcement learning (RL) to the motif-scaffolding problem to determine optimal
motif coordinates and guide scaffold generation to preserve motif functions while prioritizing cor-
rectness and novelty. We will use test cases presented in MotifBench [5]] for examples of motifs to
scaffold and ESM3 [6] to perform the generation. We will score our generated designs using the
evaluation pipeline presented in MotifBench.

2 Related Work

2.1 pLMs

Pre-trained pLMs excel in identifying patterns and relationships within protein subunits, known as
residues, and can be used for a variety of downstream tasks including, but not limited to, de novo
protein design, structure prediction, functional annotation, and backbone generation. The input to
these models is a set of residues with coordinates, with the exact position of the residues impacting
the resulting generated structures. Our work would be one of the first to consider residue placement
for conditional generation with pLMs.

2.2 RL & pLMs.

In recent years, RL has been used to guide pLMs to design de novo proteins with specific properties.
The developers of the pre-trained pLM, ESM3[6]], have demonstrated that direct preference optimiza-
tion (DPO) [7] can generate out-of-distribution structures that deviate from training instances. Other
works have expanded on this idea by using both online and offline RL that optimize function while
maintaining biological plausibility [8] [9] [LO]. While these methods improve the novelty of generated
proteins, our work would be the first to apply RL specifically for conditional generation, which
requires preserving the functionality of the motif. ProteinRL generates structures for both single- and
multi- objective design functions using online RL to fine-tune using a prespecified reward function to
optimize for desired properties. DPO_pLM is a offline RL framework that uses an oracle that uses
fitness and fold similarity to guide sequence generation. In contrast, ESM-PF trains an efficient proxy
reward model to a mutation policy to generate biologically plausible de novo sequences.
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2.3 Motif-scaffolding Problem.

Protein structure generation conditioned on motif segments is a canonical problem in the protein
design field. To accommodate motifs that catalyze specific reactions, generative methods [1] [6]]
use residue-level information (protein geometry, amino acid identity, position, side-chain rotamer)
and sequence indices as input. Recent work [11] takes a different approach: the model uses only
the atomic coordinates of the catalytic site and infers indices and side-chain rotamers dynamically.
Acknowledging the importance of motif placement, our work will take advantage of RL’s ability to
explore large combinatorial spaces to optimize motif coordinates for generation.

3 Methods

To utilize recent advancements in reinforcement learning with human feedback (RLHF), we formulate
this problem as a preference optimization task where we align ESM3 to prefer generating good
scaffolds 4004 Over bad scaffolds (y344). We focus on two methods, Direct Preference Optimization
(DPO) ([8]) and Identity Preference Optimization (IPO) ([12]). These methods take a dataset
D (Ygood; Yvaa|T) Which contains a prompt x and a pair of good and bad completions, (Ygood; Ybad)-
Using the dataset and a reference policy 7.y, the target policy 7y is optimized. DPO optimizes the
the target policy 7y using the following loss:

7T@(ygoodhf‘) —ﬁlog 7T(9(?Jbad|$) ):|

Lppo(mg;m =-E ~ {lo o (610
( TEf) (m’ygmd’ybad) P & & 7Tref (ygood|x) 7Trcf (ybad|x)

IPO optimizes the following loss:

Liro(ng: Tres) = —E . (log 76 (Ygood|T) ~log To(Ybaal|2) 5_1)2
y Tref (Z,Ygo0d Ybad)~ Wref(ygoodLT) '/Tref(ybad|$) )

Both techniques train a policy that increases the likelihood of generating positive examples, ¥go0d;
and decreases likelihood of generating negative examples ypqq (Figure[I). Unlike DPO, IPO adds
regresses the gap between positive and negative examples to a constant, preventing overfitting to the
preference dataset. In our particular application y refers to the generated scaffold and x refers to the
motif coordinates.

4 Experiments

4.1 Offline dataset generation.

We focused on three test cases of varying difficulties from MotifBench [35]], 1LDB) 6E6R, and 3TQB.
We conditioned on these motifs to generate scaffolds by sampling random motif placements for
protein sequence and structure generation with ESM3-open (1.4B parameters) ([[6]). For each motif
placement, we batch generate five scaffolds with different sequences. We repeat this sample-then-
generate process 1000 times to create a total of 5000 structures for each motif (Figure[I).

4.2 Assigning preferences

We assign preferences based on scaffold correctness due to the poor performance of ESM3-open
on the test cases. Based on previous work, preference pairs (Ygood, Yvad) are determined by the
following metrics: motif maintenance (motif RM .S D), scaffold validity (self-consistency RMSD,
or scRM SD) ([13])), and predicted template modeling (p1'M). Successful scaffolds, 94004, have
the following properties pT' Mgo0q > 0.5, moti f RM S D go0q4 < 3.5, and sScRM S D go0q < 3 for the
first test case (1LDB), pT'Myooq4 > 0.8, moti fRMSDg00q < 1, and scRM SDg0q < 2 for the
second test case (6E6R), pT'Myo0q > 0.6, moti fRM S D go0q < 2, and scRM SDgp0q4 < 2.5 for the
third test case (3TQB). Different thresholds are used to account for the relative difficulty of the test
case. For each pair (yg00d, Yvad), We enforce gaps to ensure the positive sample is sufficiently better


https://github.com/blt2114/MotifBench/blob/main/motif_pdbs/01_1LDB.pdb
https://github.com/blt2114/MotifBench/blob/main/motif_pdbs/06_6E6R.pdb
https://github.com/blt2114/MotifBench/blob/main/motif_pdbs/11_3TQB.pdb
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Figure 1: Preference optimization pipeline
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than the negative sample, which are sampled from the same motif placements as the positive examples
(Figure[I)). Overall, successful scaffolds have improved rewards across all metrics compared to that
of rejected scaffolds (Figure |Z|) In total, the preference datasets contains 1.2k, 1.8k, 1.6k pairs,

respectively for ILDB, 6E6R, and 3TQB.

Figure 2: Distribution of each metric for scaffolds generated by base ESM3 for the test cases, stratified

by scaffold success.
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4.3 Aligning Scaffold Generation to Motifs

We finetune ESM3-open for each of our select motifs with [PO and DPO. After the first stage of
preference optimization, we collect more samples using the finetuned policy and conduct a second

[ Rejected Scaffolds
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round of training with the new preferences. We use the same cutoffs as described in previous sections
and preference optimization techniques, but with preferences generated using the finetuned policies.
For each stage of training, we finetune the ESM3-open model for 8 epochs with batch size 8 and 8
gradient accumulation steps. We also use gradient clipping to improve training stability. This results
in a total of four models per motif, for the two stages of training and the two methods of preference
optimization.

4.4 Evaluation

We evaluated our trained models on a set of 100 motif placements for the three test cases presented in
MotifBench: 1LDB, 6E6R, and 3TQB. We then run the MotifBench scoring pipeline to evaluate the
samples generated from our RL-finetuned ESM3. To capture the ability of the finetuned generative
model, we use the MotifBench scoring:

1 # test cases
MotifBench score = ———— 100 4+ «
# test cases ; ( )

where oo = 5. Successful scaffolds are defined as moti f RM SDgo0q < 1, and scRM SDgo0q < 2.
We report the success rate as the number of successful scaffolds out of the 100.

# unique solutions for case ¢

« + # unique solutions for case i’

5 Results

5.1 Preference Optimization Improves Scaffold Generation

Because evaluation through MotifBench is costly, we evaluate the trained model after completing
8 epochs of training. We see that training decreases average DPO loss for both test cases, but is
not stable for IPO loss (Figure [3). This could be explained by the small difference between the
log-likelihoods for successful and rejected scaffolds. After a second stage of finetuning with the
online preference pairs, we notice that the average loss for the second stages of training is lower for
6E6R, about the same of 3TQB, and variable for 1ILDB compared to the first stages of training. We
observe the loss for 3TQB is generally lower than that of the other test cases likely due to the noisy
preferences where the reward metrics are overlapping (Figure [2)).

Figure 3: Training loss curves across 8 epochs for the motif test cases. Training stage prefers to the
round of finetuning the model is currently on.
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We observe that the number of correct scaffolds is greater for the DPO and IPO than the base
model for the motif, 6E6R, which is expected due to the relatively lower difficulty level (Figure [).
However, there are no successful scaffolds for 1LDB after applying preference optimization. This
is likely because no successful demonstrations existed in the preference dataset. When examining
the individual metrics for the evaluation placements, we see scRM S D is higher for DPO and IPO
methods compared to that of the baseline (Table[I). We suspect that this is due to the preference for
higher sequence compatibility versus geometric compatibility. For 6E6R, we observe a significant
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decrease in moti f RM S D compared to baseline, whereas for ILDB we do not see this effect (Table

1.
Figure 4: Success rate by method and test case

Method
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(a) 01_1LDB (b) 06_6E6R
Metric Base PO DPO Metric Base PO DPO
RMSD 13.95 15.56* 15.20%* RMSD 6.85 8.32%** 77 8Ok
Motif RMSD  5.01 5.00 5.02 Motif RMSD  2.64 2. 37%%% D 47%%*
pT™M 0.44 0.42 0.43 pT™M 0.54 0.54 0.54

Table 1: Mean metric values for each method and test case. Asterisks denote significance vs. Baseline:
*p < 0.05, #* p < 0.01, #** p < 0.001.

5.2 Two-stage Training with Online Preferences

In a second stage of finetuning, we incorporate online preferences. After evaluating the set of
two-stage-trained samples, we observe further reductions in DPO loss but at the expense of motif
preservation. Average motifRMSD rose in all cases, resulting in zero "successes" as defined
by the MotifBench metric thresholds (Figure [5). Interestingly, although we see an increase in
motif RM S D, we observe that, for certain test cases, there is a significant decrease in backbone
(global) RM SD (Figure |§|) For test case 6E6R in particular, the distribution (IQR) of RMSD
becomes much narrower as a result of the integration of online preferences. In contrast, we see that
two-stage training has a negligible effect on test case 3TQB global RM SD (Table[2).

6 Discussion

6.1 Limitations

While results are promising, our project has a few limitations. Because we focus on three of the
test cases from MotifBench, our evaluation does not represent all the heterogeneity in the different
possible motifs. Furthermore, due to limited compute resources, we only generate a limited number
of samples (<2k) to create the training set for our three select motifs and only evaluate the smallest
ESM3 model (ESM3-open). Scaling to larger datasets and models may qualitatively change the
results. Despite these limitations, we believe that our project demonstrates a proof of concept that
preference optimization may be an additional method that can be used to refine existing pretrained
pLMs to optimize conditional generation.
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Figure 5: Success rate for each motif test case for base ESM3 and all finetuned models.
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Figure 6: Distributions of backbone (global) RMSD conditioned on each motif test case for base
EMS3 and all finetuned models on set of self-consistency (ProteinMPNN + ESMFold) samples.
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Table 2: Mean + SD of global RMSD and motif RMSD (in A) by method and MotifBench test case.

Motif Method RMSD (A)  Motif RMSD (A)
Base 13.95 & 11.00 5.01 & 0.86
DPO 15.20 + 10.88 5.02 4+ 0.93
ILDB IPO 15.56 + 12.04 5.00 & 0.99
DPOx2 10.31 4 10.37 5.1340.70
IPOx2 11.274+11.55 5.13+0.75
Base 6.85 + 8.45 2.64 &+ 1.22
DPO 7.80 + 8.81 2.47 +1.22
6E6R PO 8.32 +9.15 2.37 +1.25
DPOx2  2.75+6.18 3.73+0.35
IPO x2 1.89 4 4.64 3.69 & 0.07
Base 3.21 +4.91 10.93 + 3.25
DPO 2.96 + 4.79 11.41 +4.96
3TQB IPO 2.36 + 2.88 10.49 + 3.13
DPOx2  2.7343.49 11.52 + 6.37
IPOX2  3.70 +6.01 11.45 + 5.60

6.2 Challenges

Throughout this project, we faced many challenges. Particularly, we took care with creating the
preference dataset and determining metrics that accurately reflect the preferences of our optimized
model. ESM3-open preforms relatively poorly on the MotifBench test cases so we relaxed what
we defined as a "good" scaffold to increase the number of preference pairs we could attain for our
dataset. Beyond developing motif-specific models, we attempted to optimize one model to perform
well on many MotifBench motifs but were not succcessful. We believe this is likely due to the
heterogeneity and complexity of the motifs, many of which involve multiple segments, which creates
a noisy preference dataset. Additionally, since these motif test cases are canonically challenging, it
is difficult to generate "good" or "successful" designs for many of the motifs, as evidenced by the
public leaderboard hosted by the authors of MotifBench. Perhaps more data or different fine-tuning
methods are needed to learn from a preference dataset of using all MotifBench test cases.

7 Conclusion

7.1 Summary

In this project, we apply preference optimization methods to pLMs to improve conditional generation
for the motif-scaffolding problem with test cases from MotifBench. We demonstrate that preference
optimization can potentially improve scaffold generation with ESM3-open when fine-tuned on offline
preferences, particularly when correct demonstrations exist in the dataset. Finally, we explore the
potential to use online samples to finetune ESM3, and although the resulting success rates for the
two-stage samples were lower than those of the offline-only models, further investigation on more
robust integration of online preferences would be valuable. We see that for some test cases (6E6R in
particular), incorporating online preferences may lead to lower global backbone RM S D, suggesting
that the designed structure is more "foldable" (protein-like) under the self-consistency evaluation
pipeline.

7.2 Future Work

To address our limitations, we would like to scale to larger training datasets and models. In particular,
we are interested in developing a method that can fine-tune one pLM to improve scaffold generation
in a motif-agnostic manner. The scaffolds generated using this hypothetical model will conserve
the motif function regardless of the chemistry, leading to better overall performance and large
applicability. This would likely involve incorporating data capturing biochemical and biophysical
properties of the motif structure.
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